Fast Subgraph Matching on Large Graphs using Graphics Processors

نویسندگان

  • Ha Nguyen Tran
  • Jung-jae Kim
  • Bingsheng He
چکیده

Subgraph matching is the task of finding all matches of a query graph in a large data graph, which is known as an NP-complete problem. Many algorithms are proposed to solve this problem using CPUs. In recent years, Graphics Processing Units (GPUs) have been adopted to accelerate fundamental graph operations such as breadthfirst search and shortest path, owing to their parallelism and high data throughput. The existing subgraph matching algorithms, however, face challenges in mapping backtracking problems to the GPU architectures. Moreover, the previous GPU-based graph algorithms are not designed to handle intermediate and final outputs. In this paper, we present a simple and GPU-friendly method for subgraph matching, called GpSM, which is designed for massively parallel architectures. We show that GpSM outperforms the state-of-the-art algorithms and efficiently answers subgraph queries on large graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Graduated Assignment Algorithm for Graph Matching - Pattern Analysis and Machine Intelligence, IEEE Transactions on

A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, two-way (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational complexity [O(/m), where land mare the number of links in the two graphs] and robustness in the prese...

متن کامل

GiS: Fast Indexing and Querying of Graph Structures

We propose a new way of indexing a large database of graphs and processing exact subgraph matching (or subgraph isomorphism) and approximate (full) graph matching queries. Rather that decomposing a graph into smaller units (e.g., paths, trees, graphs) for indexing purposes, we represent each graph in the database by its graph signature, which is essentially a multiset, and each signature is the...

متن کامل

The augmented Zagreb index, vertex connectivity and matching number of graphs

Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.

متن کامل

Graph matching: filtering databases of graphs using machine learning techniques

Graphs are a powerful concept useful for various tasks in science and engineering. In applications such as pattern recognition and information retrieval, object similarity is an important issue. If graphs are used for object representation, then the problem of determining the similarity of objects turns into the problem of graph matching. Some of the most common graph matching paradigms include...

متن کامل

A Graduated Assignment Algorithm for Graph Matching

A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated non-convexity (deterministic annealing), two-way (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational complexity (O(lm), where l and m are the number of links in the two graphs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015